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SUMMARY 
Measurements of mean velocity, turbulent stress and static 

pressure were made in the mixing region of a jet of air issuing 
from a slot nozzle into still air. The velocity was low and the 
two-dimensional flow was effectively incompressible. The results 
.are examined in terms of the unsimplified equations of fluid 
motion, and comparisons are drawn with the common assumptions 
and simplifications of free jet theory. Appreciable deviations 
from isobaric conditions exist and the deviations are closely 
related to the local turbulent stresses. Negative static pressures 
were encountered everywhere in the mixing field except in the 
potential wedge region immediately adjacent to the nozzle. 
Lateral profiles of mean longitudinal velocity conformed closely 
to an error curve at all stations further than 7 slot widths from 
the nozzle mouth. An asymptotic approach to complete self- 
preservation of the flow was observed. 

1. INTRODUCTION 
Few turbulent flows have received more experimental and theoretical 

study than the simple free jet. Nevertheless, very little appears to be 
known of the role of the mean static pressure in the jet flow. It is commonly 
assumed (Alexander et al. 1953; Liepmann & Laufer 1947; Pai 1954; 
Schlichting 1955) that the mean static pressure gradient in the direction 
of the jet flow is everywhere negligibly small compared to other mean forces 
.on the fluid. Although this assumption seems to be justified in the approxi- 
mate calculation of mean velocity distributions, a consideration of the depar- 
tures from it may lead to a better understanding of the structure of the flow. 

Pitot tube static-tap pressure measurements have been reported for the 
coaxial water jet by Viktorin (1941), for the round compressible air jet 
by Warren (1955), and for incompressible air flows in ducts by Fage (1936) 
and in two-dimensional wakes by Fage and by Schlichting (1930). These 
measurements, while revealing significant departures from isobaric flow, 
were too fragmentary for detailed interpretation in terms of the basic 
equations of fluid motion. 

In  this investigation, the static pressure, mean velocity and turbulent 
stress fields of a two-dimensional, incompressible, free turbulent air jet 
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were measured and analysed. The selection of a two-dimensional flow 
permitted the use of a static pressure probe insensitive to local mean 
flow direction and turbulent velocity fluctuations in the plane of mean flow. 
Although mean velocity data have been published for the two-dimensional 
jet by Forthmann (1934) and by Reichardt (1941), the static pressure and 
turbulence measurements reported here are believed to be unique. 
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2. THEORY 
All 

solid boundaries, shown in cross-section, are sufficiently extended in the 
perpendicular x-direction to ensure two-dimensional flow throughout the 
region of measurement in the plane z = 0. Geometrical symmetry of the 
boundaries requires functional symmetry of all scalar flow variables about 
the centreplane (y = 0). 

The geometry of the two-dimensional jet is indicated in figure 1. 

I 
I 

EXPERIMENTAL 
NOZZLE 

Q = 0.500 IN. 
R = 2.617 IN. 
W = 3.00 IN. 

Figure 1. Nozzle and flow geometry. 

I 
I 

Equations of motion 
Under the restrictions placed on the flow (two-dimensional, 

incompressible, steady on the average), the appropriate equations of motion, 
with the customary notation, are : 

au av 
ax ay 

(Continuity) - + - = 0, 

a a 
aY 

(x-Reynolds) ~ ( p U z + + p ~ + $ ) +  - (pUV-T+y[) = 0, (2) 

a - a 
aY 

(y-Reynolds) - (pVa+pd8+P)+ (puv-T-P() = 0, (3) 
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where T = - p u q  is the turbulent shear stress and 6 = a V/  ax - a U/ay is the 
mean vorticity. Equations (2) and (3) are easily obtained from more 
common forms of the Reynolds equations given by Goldstein (1938) and 
by Townsend (1956) with the aid of (1). 

Boundary conditions 
Those variables which are odd functions of y (V, UV, T, 5) are zero at 

y = 0 ; variables which are even functions in y (U, U2, V2, u'*, D'*, p ) ,  have 
zero derivatives in the y-direction at y = 0. In addition, all variables and 
their directional derivatives of all orders approach zero as IyI approaches. 
infinity. (In the actual experiment there was a low velocity recirculation 
of air from the downstream to the upstream portions of the jet and the region 
of flow was finite in the transverse direction.) It is convenient to define two 
additional boundaries, y = &A(x), outside which the flow is essentially 
nonturbulent. On and outside these boundaries the turbulent stresses 
(puI2, p d 2 ,  T) and their derivatives are zero. 

Integral forms of the equations 

in the y-direction gives : 

- -  

- -  

Making use of the boundary conditions, integration of (l), (2) and (3). 

a \, $-(pU2+p;;;i+j) dy+pUV--7+1*.5 = 0, 

In  this investigation, dimensionless forms of these three equations were used 
to calculate the distributions of V ,  T and 2 2  in the fully turbulent region from 
measured distributions of U, uI2 and 3. 

Taking infinity as the upper limit in (4) and (5) gives the total mass and 
momentum flux integrals ; 

- 

m I ~ d y  = I (constant), 

1 (pUZ+pZ+j) dy = J (constant). 

(7) 

(8) 

0 
m 

0 

SimpliJcations used in the theory of fully turbulent$ow 
Equations ( l ) ,  (2) and (3) contain six dependent variables, and solutions. 

of the problem cannot, therefore, be obtained by wholly analytic means. 
A number of simplifications based on experiment, assumption or hypothesis 
have appeared in the literature, and are described in the remaining part of 
this section. Heretofore, the lack of sufficiently complete empirical 
information has prevented a critical evaluation of some of these 
simplifications, particularly those involving static pressure assumptions. 

A 2  
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1.  Reynoldsnumber similarity. It has been observed by Townsend (1956) 
that in a fully turbulent flow there exists a region including almost all of the 
flow in which the direct action of viscosity on the mean flow is negligible, 
i.e. in which 

'The regions of laminar flow outside the turbulent jet are excluded. 
IPUV-4 B lPt1 for IyI <A(%). (9) 

2. Self-preservation. Mean velocity measurements in the fully turbulent 
region of the free jet by Reichardt (1941) reveal that transverse distributions 
of U retain the same functional form at all downstream locations while 
changing only in scale, i.e. 

'The scale factors U, (mean velocity on the centreplane) and b (jet width) 
.are functions of x alone. In  this investigation b is defined by the relation 

U = Ucfi(r), where 7 = y/b. (10) 

b(x) = Jrn (U/UJa dy .  (11) 
0 

'Townsend (1956) discusses the hypothetical flow wherein all flow variables 
,of equations (l), (2) and (3) (except the vorticity) are self-preserving in the 
same sense as U ,  i.e. 

He shows that complete self-preservation is theoretically possible in the 
two-dimensional free jet and that necessary conditions are : 

P = U,"fi(v), etc. (12) 

&/dx = c(constant), or b = c(x - xo), (13) 

and u,z - (x - x0)-k, (14) 
where k is a constant. Mean velocity measurements in the two-dimensional 
air jet by Forthmann (1934) and Reichardt (1942), show excellent agreement 
with these conditions and give values for the constants, 

However, measurements of turbulent stresses in the round jet by Corrsin 
'(1943) do not exhibit self-preservation within 40 nozzle diameters of the 
nozzle although a tendency toward self-preservation is apparent. This 
has led Townsend to conclude that complete self-preservation may be an 
asymptotic condition not valid over the usual range of measurement. 
It should be noted that the nonturbulent flow surrounding an actual jet 
cannot be fully self-preserving. 

c = 0.075 and k = 1.00. (15) 

3. x-Reynolds equation. In  calculations of mean velocity distributions, 
it is commonly assumed, as by Pai (1954) and Schlichting (1955), that 
gradients in the x-direction of the turbulent stress p p  and the mean static 
pressure are negligible compared to the other forces acting on the mean flow, 
i.e. that 
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When, in addition, the viscous stress is neglected, this assumption leads to 
simplified forms of the x-Reynolds equation, 

and of the momentum integral (8), 

4. Hypothetical independent equations. Self-preserving analytic solutions 
for U, V and r can now be obtained when an independent relation between 
one or more of these variables is assumed. The new relation must be 
independent of equations (1) and (17), which are also used in the calculation. 
A number of such solutions (Gortler 1942; Reichardt 1941; Tollmein 
1926) have been based on such independent relations as the ‘ mixing length ’ 
hypotheses of Prandtl (1942), Taylor (1938), and von KArmAn (1934).. 
Two are presented here for later comparison. 

(a) Gortler’s exchange coefficient 
au 

Hypothesis : T = pT(x)  

‘solution for U :  U = U, sech2(#y). (19) 
(b)  Reichardt’s thermal conduction analogy 

a u2 a w 2  
Hypothesis: ax = R(x) aya 
Solution for U :  U = U, exp( - $ 7 ~ 1 1 ~ ) .  (20) 

Several authors (Corrsin 1943, Liepmann & Laufer 1947, and Townsend 
1956) have noted the shortcomings of these simple hypotheses. 

Tollmien (1926) assumed that the turbulent 
y-stress ( p 3 )  is negligible in the y-Reynolds equation, so that 

5. y-Reynolds equation. 

and then solved for the centreplane static pressure ; 

Values of U, V and T needed in the calculation were obtained in the manner 
of the preceding paragraph using Prandtl’s first mixing length hypothesis. 
Since c = 0.075 in the two-dimensional air jet, he concluded that the static 
pressure can be neglected in both Reynolds equations. This conclusion 
is in direct contradiction to a theoretical result described by Townsend 
(1956). A dimensional analysis of the magnitudes of the various terms in 
the y-Reynolds equation led Townsend to the conclusion that the lateral 
gradients of the turbulent y-stress and static pressure are the dominant 
terms and that the integrated form of the equation may be written 

wherep,(x) is a function of x and equals the static pressure ‘ outside the flow ’. 

3, = 0*263c2pU:. (22) 

j + p i P  = (23) 
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Figure 2. Flow system. 

removable plywood sections which provided access for the probes. A 
lead-screw traversing mechanism, located beneath the floor, supported and 
positioned the probes. It permitted manual positioning of the probes 
in the (x, y)-plane with an estimated accuracy of 0.002 in. The centrifugal 
blower was driven at 750rpm (except during hot-wire calibration) by a 
three-phase induction motor. All measurements were made at a nozzle 
mouth velocity U ,  of 72 ft./sec, corresponding to an exit Reynolds number 
(aUJv)  of 1-78 x lo4. 

Static pressure equipment 
Reflections of 

the nozzle mouth on the polished surface of the disk were used in aligning 
the probe accurately in the plane of the flow. All pressure readings were 
made relative to a reference tap exposed to stagnant atmosphere far from 
the mixing region. A Prandtl-type micromanometer (Flow Corporation 

Figure 3 shows the design of the static pressure probe. 
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Model MM-2) was used in all pressure measurements. This instrument 
has a range of 0-2 in. and an accuracy of & 0.0004 in. of manometer liquid 
(n-butyl alcohol). No corrections (Fage 1936 ; Goldstein 1936) were 
applied to the pressure measurements to account for the effect of the z-velocity 
fluctuations on the probe pressure. The maximum error in the measure- 
ments is estimated to be of the order of 5 yo. This estimate is based on the 
assumption of equality of the intensities of the different fluctuation velocity 
components on the centre-plane of the jet. Equality has been observed on the 

SILVER SOLDER 
.5 0 

304 SS TUBING 
.065 OD 
.050 I D  

ELEVATION - DETAILS OF TIP 

ALL DIMENSIONS , 
IN INCHES 

PLAN 

Figure 3. Static pressure probe. 

centre-line of a round jet by Corrsin (1943) and on the centre-plane of a two- 
dimensional wake by Fage (1936). The values of P shown in figure 9 
were calculated from measurements of 3, U and 5 and were found to 
approach P on the centre-plane at large distances from the nozzle, as 
would be expected in agreement with the observations of Corrsin and of 
Fage. The measured 5 is the most important term in this calculation and 
significant errors in the measurement of the static pressure would be reflected 
in corresponding deviations from the equality of P and v". 
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Hot-wire equipment 
The hot-wire anemometer constructed for this study was of the constant 

temperature type and was very similar in design and performance to the 
anemometer described by Laurence & Landes (1952). A Rubicon potentio- 
meter and an electronic mean-square circuit were used in the measurement 
of the DC and AC components of the wire heating current. The tungsten 
hot-wire used to measure both U and Zz had a diameter of 0.0002 in. and an 
active length of 0.08 in., and was supported in a vertical position in the flow. 
Mean velocity hot-wire calibrations were carried out before and after each 
series of hot-wire measurements. An impact tube, mounted in a probe 
with static taps in opposing parallel walls, was used as the standard of velocity. 
Simultaneous readings of the velocity head and the wire heating current 
at two or more velocities constituted a calibration. All calibrations were 
made in the low-turbulence region at the nozzle mouth. The limiting 
factor in the accuracy of measurements was the observer's ability to judge 
the mean value of a randomly fluctuating visual signal. It is estimated that 
hot-wire mean velocity measurements were subject to a maximum error of 

David R.  Miller and Edward W. Comings 

f 3% of u,. 

4.  RESULTS AND DISCUSSION 

Hot-wire and static pressure traverses, made at 11 lateral stations and 
along the centre-plane, covered the entire region of turbulent flow out 
to a distance 40a (20 in.) from the nozzle. The measurements, consisting 

"0 10 2 0  3 0  40 
X / O  

Figure 4. Jet width. 

of voltage, current, micrometer and scale readings, were reduced to the 
usable dimensionless quantities by a digital computer (Electrodata Model 
203). All lateral profiles were 'folded' before plotting by averaging 
computed values on each side of and equidistant from the centre-plane. 
Only minor asymmetries were apparent in the full profiles. 

Figures 4 through 10 present the main experimental results in dimension- 
less form. Complete tables of data for the single jet reported,here and for 
a double jet system are available elsewhere (Miller 1957). The jet width 
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is shown as a function of downstream position in figure 4. The width is 
approximately constant for the first four slot widths from the nozzle. 
Farther downstream, a transition to a linear spread is observed. From 
x /a  = 7 to the farthest measurement station, the jet width is well described 
by equation (13), least-mean-square values of the constants being c = 0.0723 
and xo/a  = - 1.572. 

The decay curve for the centreplane velocity (squared) appears in 
figure 5.  The straight portion of the curve for x/a> 7 has a slope of - 1.028 
as compared to a slope of - 1 predicted by the approximate equation (18). 
The behaviour of b and U, with distance from the nozzle defines two 
distinctive flow regimes, the transition flow region extending from the nozzle 
to x /a  = 7, and the fully turbulent region lying farther downstream. 
These two regions are considered separately. 

- - - 
- 
- 

OPE - - 1.028 - 
- 

0 LATERAL RUNS 
A LONGITUDINAL RUN - 

- 

I 1 I I l l l l l  1 I I 1  

- 1  1 2 5 10 20 5 0  
(x  - x,)/a 

Figure 5.  Centreplane velocity decay. 

Fully turbulent region 
Figure 6 is a composite plot of the U-profiles measured at x/a = 10,20,3@ 

and 40. I n  this and other figures pertaining to the fully turbulent region, 
U, and b, both functions of x, are used to normalize the data. All experi- 
mental points lie on the single curve, within the limit of error, indicating a 
high degree of self-preservation of the mean velocity profiles. The plotted 
points in the low velocity region do not represent U truly since the single 
hot-wire does not distinguish between U and V. The points actually 
represent 1/( U2+ V2)/Uc.  Making use of this fact and equation (4), the 
true values of U can be computed. Both the corrected and uncorrected 
profiles are shown in figure 6, as well as the square of the corrected profile. 
The smoothed and corrected experimental curve is seen to be in good 
agreement with points on the error curve of Reichardt's analysis (see (20)). 
Gortler's profile (see (19)) deviates widely from the data for values of y/b 
greater than 1.8, indicating that the eddy viscosity is not constant across 
a section but decreases with distance from the centre-plane. 
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Turbulent x-stress profiles appear in figure 7. The most striking feature 
of this plot is the merging of the curves into a single envelope curve in the 
outer region of mixing. Partial self-preservation is thus exhibited with 

I .o 

.a 

.6 

u/u,, 
dl u: 

.4 

.2 

.o 
0 I 2 

rl 
3 

Figure 6. Mean velocity profiles-fully turbulent region. 

a definite tendency toward complete self-preservation as the distance from 
the nozzle increases. Each curve of figure 7 is well correlated by a 
summation of two error curves. From the trend in the error curve 
parameters with distance, it is reasonable to expect that the asymptotic 
profile is approximated by the empirical relation 

(u’Z/U& = = 0-17exp(-0-51r)~)-0.10exp(- 1-15q2). 
The outer boundary of turbulence is seen to fall at y/b = 4, i.e. h = 46 
in the fully turbulent region. 

The gradual transition of 
the profile with longitudinal distance is apparent. Partial self-preservation 
is not observed in these curves. However, the trend in the shape of the 
curves is toward a stable functional form, varying only in amplitude as the 
distance from the nozzle increases. The two farthest profiles are well 
described by the simple error curves 

(24) 
- 

Static pressure data are plotted in figure 8. 

[ ( ~ - ~ , ) / p U , 2 ] , , ,  - 30 = - 0.054 exp( - 0-30q2), 
[ ( p  -FA)/pU,2],,u = + - 0.060 exp( - 0*30q2). 

(25 a) 
(25 b) 
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Figure 7. Turbulent x-stress profiles-fully turbulent region. 

0 I 2 3 4 
-.06 

r) 

Figure 8. Static pressure profiles-fully turbulent region. 

'The correspondence is better for the profile at x / a  = 40, indicating that 
functional self-preservation is achieved close to this station. Note that j A  
is neither zero nor constant with x as is sometimes assumed. Because it is 
not self-preserving, it has been subtracted from3 in equation (25). 
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A comparison of the empirical coefficients of equations (25a, b) with 
the corresponding centre-plane values of u-1 U,Z of figure 7 reveals that the 
quantities are very nearly equal. If it is assumed that this equality persists 
for larger values of x, the asymptotic solution for the static pressure is 

where the coefficient is obtained from equation (24). 
Tollmien's solution for the static pressure on the centre-plane (see (22)) 

givesp,/pU,2 = 0-00137 when c = 0.0723, whereas the measured values are: 
x / a  = 10 20 30 40 

The lack of equality indicates that Tollmien's basic assumption (21) is 
grossly in error. 

[(2; -jn)/pU:]z = - 0.07 exp( - 0.30v2), (26) 

P,/pU," = - 0.0259 - 0.0389 - 04498 - 0.0582. 

Figure 9. Turbulent y-stress and shearing stress profiles-fully turbulent 
region. 

Using the data of figures 4-8 in equations (4)' (5) and (6), values of 
The latter two variables are plotted in figure 9 

There is a close negative corres- 
V ,  3 and T were computed. 
together with j and u12 for comparison. 
pondence, improving with x, between$ and pv-i.e,. 

This relation is identical to the one put forward by Townsend (see (23)), 
and it supplies experimental verification of the validity of his neglect of 
other terms in they- Reynolds equation. All remarks made above concerning 
self-preservation of the static pressure profiles apply also to the turbulent 

3 + p P  = &(x). (27) 
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y-stress profiles. With a change in sign, equations (25 a, b) are equally good 
descriptions of the vP/U: profiles. Figure 9 reveals clearly the tendency 
for P to equal 3 on the jet centreplane. 

Self-preservation of the turbulent shear stress profiles is seen to exist 
at x/a = 20, 30 and 40. This is to be expected since the other significant 
terms in equation (5), U2 and UV, are both fully self-preserving. The 
fact that these profiles do not approach zero aty/b = 4 is taken as an indication 
.of errors of measurement and calculation. The magnitude of 'the error 
at the limit of the region of turbulence, where T should approach zero, is 
particularly sensitive to the value of K used in the calculation. A value 
closer to 1.000 than the measured value 1.028 would result in a reduction 
of the error. 

In order to test the assumption underlying equation (16), the values of 
the two sides of the equation were calculated at a number of different points 
in  the flow and are set out in table 1. The implication of the assumption 
is that the numbers appearing in the last column of the table should be much 
less in absoIute magnitude than the numbers in the adjoining column. 
This is seen to be the case at most points; however, there exist isolated 
regions where the y-derivative passes through zero and the assumption is 
invalid. Even in these regions equation (17) is not seriously in error, 

-- 
10 
10 
10 
10 
20 
20 
20 
20 
30 
30 
30 
30 
40 
40 
40 
40 

0 0.048 0.0002 
1 -0.010 --0.0013 
2 - 0.001 0.0014 

-0~000 0~0001 3 
0 0.012 -0.0003 
1 0.003 - 0.0007 
2 - 0.004 -0~0005 
3 - 0.002 0.0007 
0 0.007 -0*0001 
1 0.004 - 0*0003 
2 -0~000 - 0*0004 
3 -0.002 - 0.0002 
0 0.003 - 0~0000 
1 0.003 - 0.0001 
2 0.000 - 0.0002 
3 -0.001 - 0-0002 

because of the small magnitude of the neglected terms. This is a fortunate 
situation, due largely to the fact that p p  and are of the same order of 
magnitude and of opposite sign. Their sum and its derivatives are con- 
sequently much smaller than either term and its derivatives alone. The 
x-Reynolds equation simplification leading to (16) is thus justified in free 
jet  flow. 
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Transition region 
Lateral distributions of U, 3 and j5 were measured at x/a = 0, 0.6, 

1,2,3,4 and 6. The computation procedure for obtaining the corresponding 
distributions of V ,  P and T was not used because of the relatively large errors 
involved in calculating derivatives in this region of large gradients. 

The region of low turbulence level ( d ( p ) / U  < 0.05) immediately 
downstream from the nozzle was contained in a wedge whose vertex fell 
on the centre-plane at x / a  = 2.5 and whose base coincided with the nozzle 
mouth. A positive static pressure ridge, straddling the centre-plane and 
decaying rapidly with x, was found within the ‘ potential wedge’. This. 
ridge is attributed to the persistence of the pressure distribution created 
within the nozzle. 

David R. Miller and Edward W. Comings 

Y ‘a 

Figure 10. Turbulent x-stress and static pressure profiles-transition region. 

Outside the potential wedge, all measured static pressures were negative. 
Particularly striking were the static pressure trenches appearing on each 
side of the potential wedge starting at x / a  = 0.8 and finally merging at the 
centreplane at x / a  = 5 .  Static pressure measurements reported by 
Viktorin (1941) and Warren (1955) reveal similar side trenches in the coaxial 
water jet and round compressible air jet, respectively. Several of the static 
pressure profiles are plotted in figure 10, the central ridge and side trenches 
being clearly visible. 

The corresponding turbulent x-stress profiles of figure 10 show the 
development of turbulence in the high shear regions on either side,of the 
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potential wedge. Except in the potential wedge, a close negative corre- 
spondence is noted between the static pressure and turbulent x-stress profiles. 
at x / a  = 1 and 2. This correspondence is seen to deteriorate at stations 
farther downstream. 

5. CONCLUSIONS 
A negative static pressure field exists throughout the turbulent region 

of the two-dimensional free jet. Its magnitude and directional derivatives 
are of the same order of magnitude as those of the x andy components of the 
turbulent stress and the turbulent shear stress. 

Static pressure is of minor importance in the x-Reynolds equation of 
motion for two reasons; (u) the longitudinal mean momentum flux pU2 is 
on the order of 20 times the magnitude of the static pressure, and (b)  the 
longitudinal turbulent stress pu- is of the same order of magnitude as the 
static pressure but of opposite sign, thereby tending to cancel its influence. 
The approximation underlying equation (16) is justified despite the fact 
that it is not correct in certain regions of the flow. 

The static pressure i, and the lateral turbulent stress pv- are the two 
dominant stresses in the equation of lateral motion in the fully turbulent 
region. Tollmien’s (1926) analysis and conclusions are therefore invalid, 
whereas Townsend’s (1956) analysis is confirmed. 

A close correspondence between the static pressure deficiency and 
turbulent stress components ( p z P  near the nozzle, p p  in the fully turbulent 
region) leads to the conclusion that where the flow is turbulent the static 
pressure deficiency is a manifestation of the presence of turbulence. 

Self-preservation of the mean velocity and turbulent shear stress profiles 
linear spread of the jet, and negligible viscous shear stress, were all observed 
in the fully turbulent region far from the nozzle, as expected from past work. 
A tendency toward self-preservation, observed in the static pressure and 
turbulent stress profiles, supports Townsend’s conclusion that complete 
self-preservation of the flow may be an asymptotic condition not valid over 
the usual range of observation. The assumption that asymptotic profiles of 
U, 3, andj ,  are simple error curves and that the asymptotic profile is a 
compound error curve is not inconsistent with the reported data. 

Of the various semi-empirical mean velocity solutions, Reichardt’s 
simple error curve describes the data best. The eddy viscosity (or exchange 
coefficient) is not, therefore, a function of x alone and Gortler’s analysis 
yields a poor representation of the mean-velocity profiles. 
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